

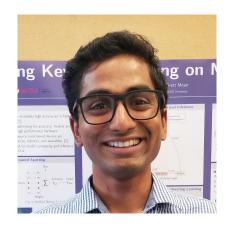
Tutorial on Optimizing Machine Learning for Hardware

Prof. Warren Gross and Prof. Brett H. Meyer Electrical and Computer Engineering McGill University

At EPEPS 2019, October 6, 2019

More Acknowledgments

Adam Cavatassi

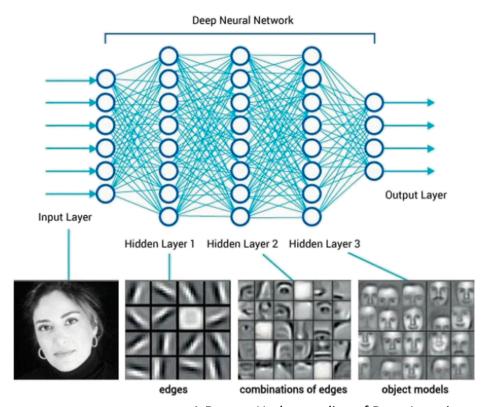


Adithya Lakshminarayanan

Sean Smithson

Recall: Deep Learning is Complex!

- Deep learning automates feature extraction
- DNN therefore
 - Have many weights
 - Rely on much data
 - Require lots of training
- What does this imply for deployment?



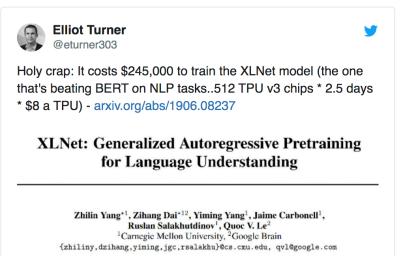
A Deeper Understanding of Deep Learning

Cloud Deployment

- Computational resources are abundant
 - GPGPUs with specialized, parallel, hardware
- GTX Titan Z
 - 5760 CUDA threads @ 705 MHz w/ 12 GB DDR5 RAM, and 672 GB/s

Cloud Deployment

- In the Cloud, systems are historically optimized for accuracy alone
 - Throughput is another key metric
- That isn't to say there aren't problems ...
 - Model size, training time, training cost, inference delay, can still be issues



Artificial Intelligence / Machine Learning

Training a single Al model can emit as much carbon as five cars in their lifetimes

Deep learning has a terrible carbon footprint.

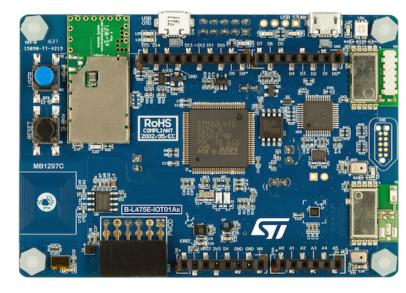
by **Karen Hao** Jun 6, 2019

MIT Technology Review

EPEPS'19, 6-October-2019 © 2019 Gross and Meyer

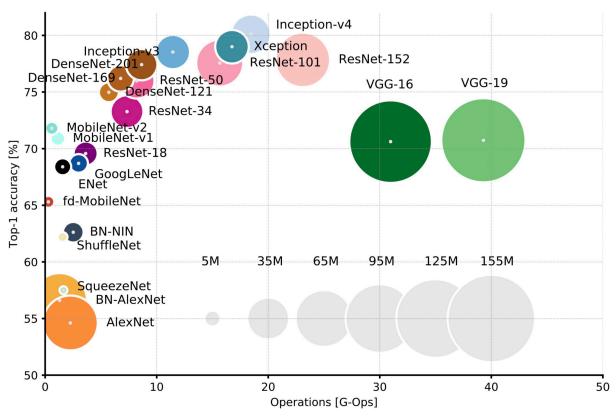
Edge and IoT Deployment

- Computational resources are limited, in comparison
 - IoT devices are often low-power, low-cost microcontrollers
- STM32L4 @ 80MHz w/ 128K SRAM, and FPU
 - $-30 \, \text{mW!}$
- Systems must be optimized for a variety of metrics
 - Memory footprint
 - Real-time systems: inference latency
 - Mobile and ultra-low-power systems: inference energy



DNN Complexity and Accuracy

Canziani, Paszke, and Culuriello, https://arxiv.org/abs/1605.07678

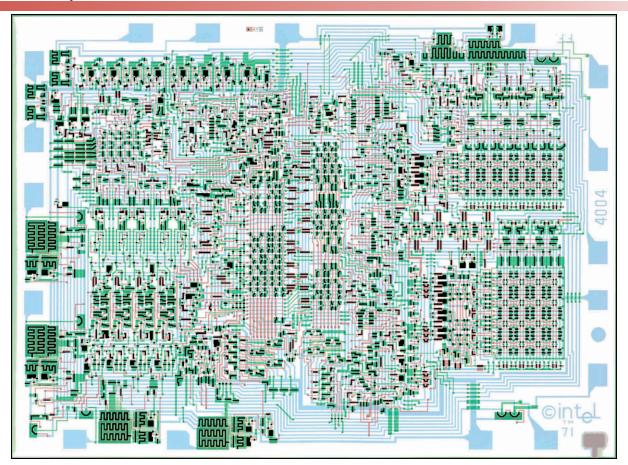


DNN Design? It's Complicated.

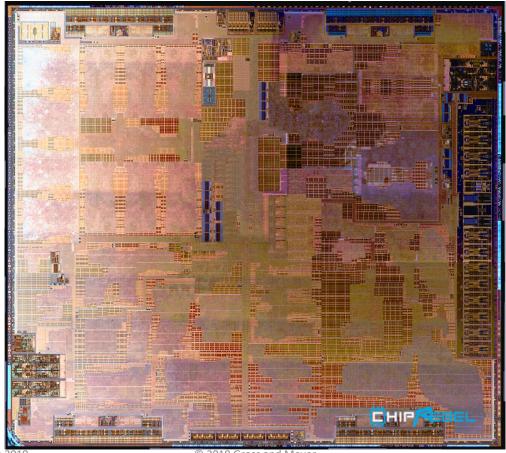
- How is such complexity coped with today?
 - Manual design and optimization!
 - Warehouse-scale computers
 - Adaptation of large networks to small problems
 - Fine-tuning
 - Weight pruning
 - Quantization

Has such complexity been overcome before?

Intel 4004: 2,300 Transistors in '71



Huawei Kirin 980: 6.9B transistors in '18



EPEPS'19, 6-October-2019 © 2019 Gross and Meyer

From the 4004 to the Kirin 980

- Transistor and circuit models cupa
- Hardware description languages TensorFlow
- Performance, power, and cost models Ops, weights, arithmetic intensity
- System-level abstractions Keras
- Algorithms to automate lower-level design AutoML

What parallels exist in machine learning?

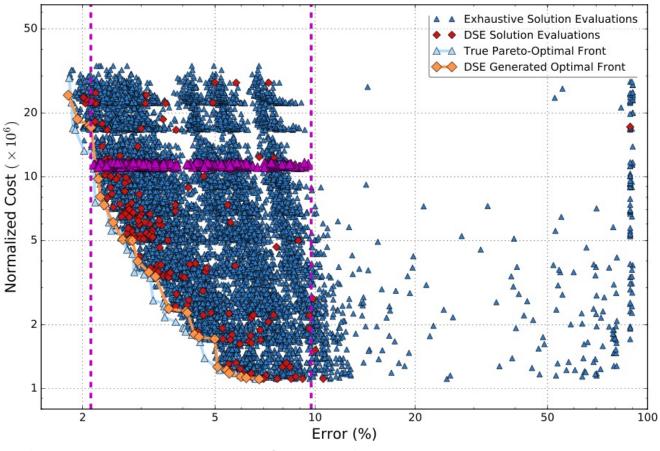
Hyperparameter Optimization

- Introduction to Architecture Search
 - Convolutional neural networks
 - Quantization
- Optimization for IoT devices
 - Quantization
 - Memory footprint optimization

Architecture Search is Difficult

EPEPS'19, 6-October-2019

Architecture Search is VERY Difficult



So Many Hyper-parameters, So Little Time

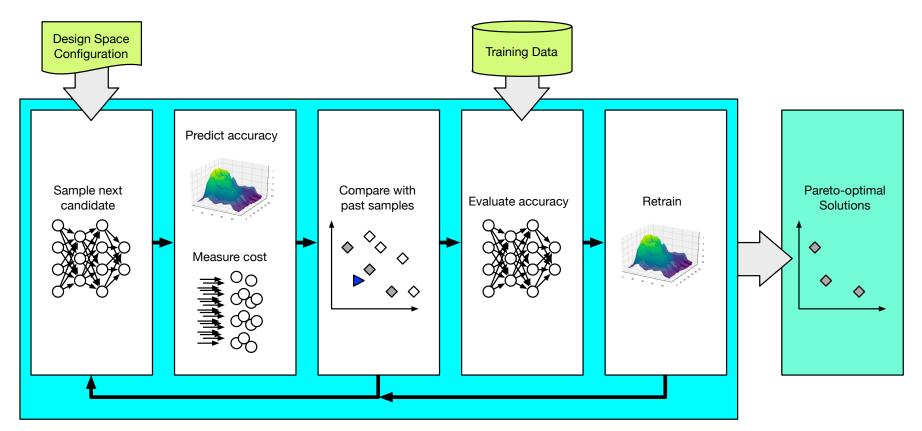
- Artificial neural networks are appearing everywhere, supporting diverse applications
 - Embedded and mobile devices
 - In the cloud, and at the edge of the IoT
 - Different domains have different constraints
- Hyper-parameter selection affects performance (accuracy) and cost (e.g., energy or delay)
 - E.g., number of layers, types of neurons, etc.
- But, no intuitive patterns in large design spaces

One solution: apply design automation techniques to deep learning

Ordinary People Accelerating Learning

- OPAL models the DNN design space with a many-dimensional response surface (hyperplane)
- A meta DNN (mDNN) learns which areas of the design space strike interesting trade-offs
 - Iteratively evaluates target DNNs (tDNN)
 - Builds a model to predict which tDNN
- Returns a near-Pareto-optimal set
 - E.g., from high accuracy, high cost, to low accuracy, low cost, and everything in between

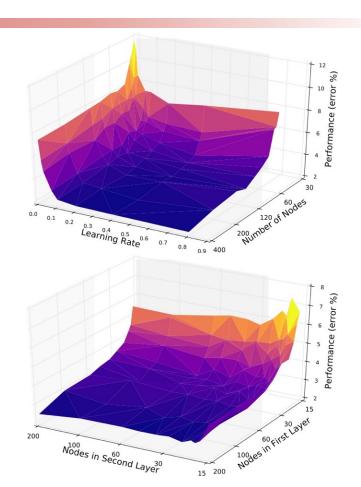
Ordinary People Accelerating Learning



Smithson, Yang, Gross, and Meyer, ICCAD 2016

Response Surface Modeling

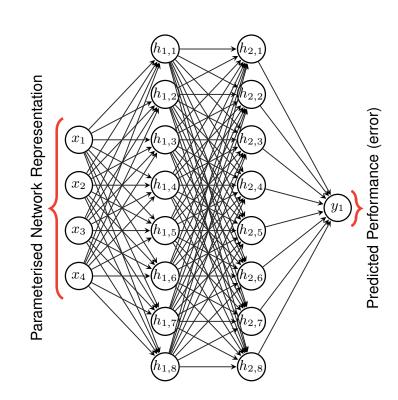
- *mDNN* models *tDNN* performance as a function of hyper-parameters
- Response surface is fit to evaluation data
- tDNN evaluation is slow, mDNN estimation is fast



18-September-2019

Performance Modeling: mDNN

- Surface modelled with two hidden layers
- Retrained after each new solution is evaluated
- Little training data needed for prediction of tDNN error



Actual mDNN is larger; smaller layers shown for visualization only

Cost Modeling

- There are several bad options for cost metrics
 - MACs, or weights, or parameters
 - These are not predictive of performance
- There are many good options for cost metrics
 - Inference delay, or inference energy
 - Arithmetic intensity
 - Memory footprint
- For now, we use inference energy
 - A weighted sum of MACs and memory accesses (about 100:1)

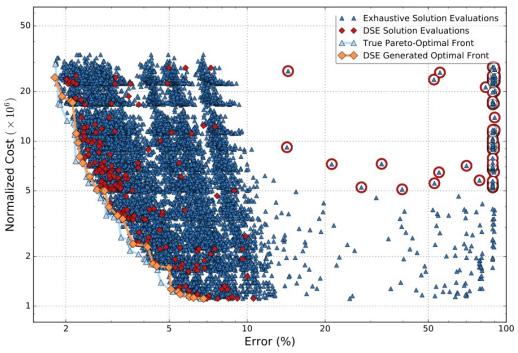
Experimental Setup

- How well does automatic search perform?
- Evaluated with image recognition benchmarks:
 - MNIST: grayscale images of handwritten digits

CIFAR-10: RGB color images, different classes

- Evaluated designing:
 - Fully-connected (FC) multi-layer perceptrons (MLPs)
 - Convolutional neural networks (CNNs)

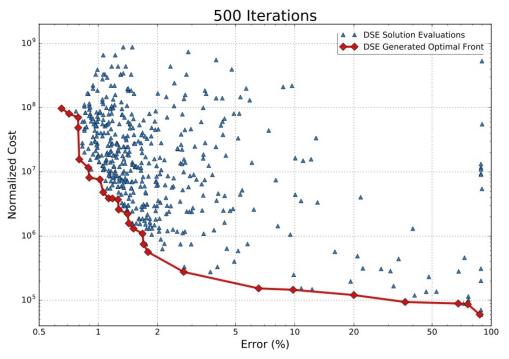
Exhaustive Search vs DSE Results



- Majority of explored points are near the Pareto-optimal front
- Many fewer objectively bad solution are evaluated

DSE: CNN on MNIST

• Design space has over 10⁷ configurations



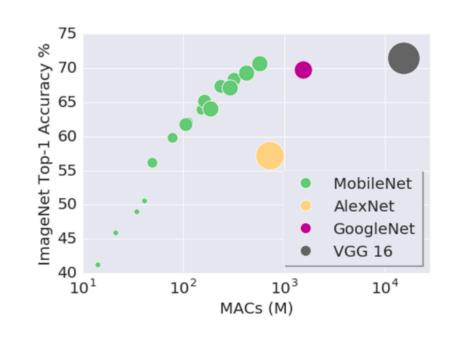
- 1-2 CNN layers
- 8-128 filters per CNN
- Kernel: 1x1-5x5
- Max-pool: 2x2-4x4
- 1-2 FC layers
- 10-250 nodes per FC

23

• LR: 0.01-0.8

Experimental Setup

- Can automatic search also effectively consider quantization?
- Evaluated with CIFAR-10
- Evaluated designing CNN
 - Per-layer fixed point, and binary quantization
 - Cost function: inference energy weighted by bit width
- Compared with Google MobileNets

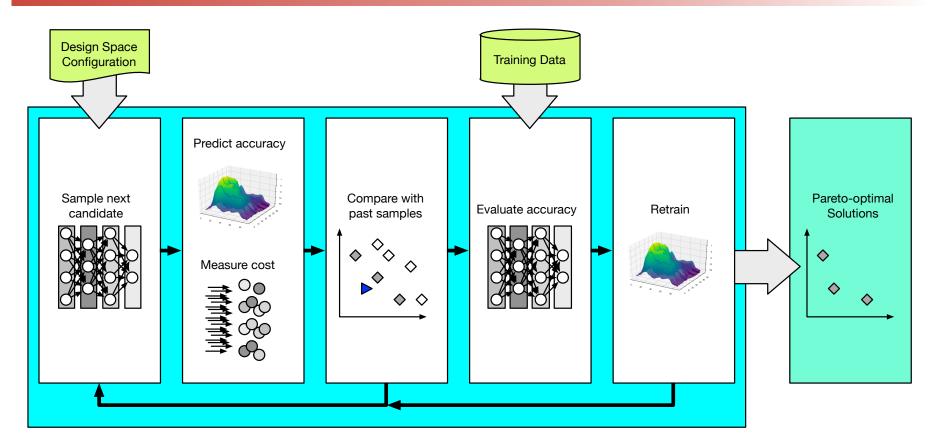


Quantization

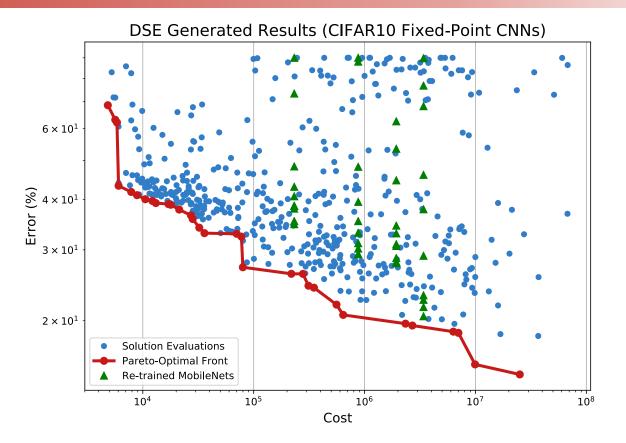
Recall: quantization means not using 32-bit floating point numbers

- For weights, for activations, etc
- Fixed point quantization is often described in $Q_{m,n}$ notation
 - -m bits of integer, n bits of fraction, with $m+n \le N-1$
 - The fewer the bits needed, the lower the complexity (in theory)
- Alternatively, weights can be binarized, ternarized, etc.

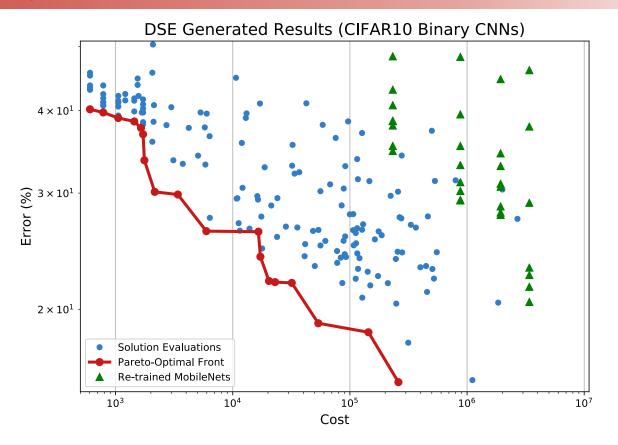
Exploring Quantization



DSE: Fixed-Point CNN on CIFAR 10



DSE: Binary CNN on CITAR 10



What Makes IoT Deployment Hard?

- Cloud deployment:
 - Keras to TensorFlow to CUDA, and everything works the way you'd expect
 - New, experimental layer? Implement it in Keras, it'll be fine
- IoT deployment:
 - Keras to depends
 - Uneven support for everything
 - Hardware constraints limit your options
 - Multiple, incompatible libraries for the same processor

Batch Normalization

- Training in batches can improving training convergence
- Batch normalization manages covariate shift in inputs across the batch of samples
 - Normalizes input features to be in (0, 1]
 - Allows models to better learn and generalize
- A special layer is placed before activations

$$\hat{x}_i = \gamma \frac{x_i - \mu}{\sqrt{\sigma^2 + \epsilon}} + \beta$$

This is a standard technique!

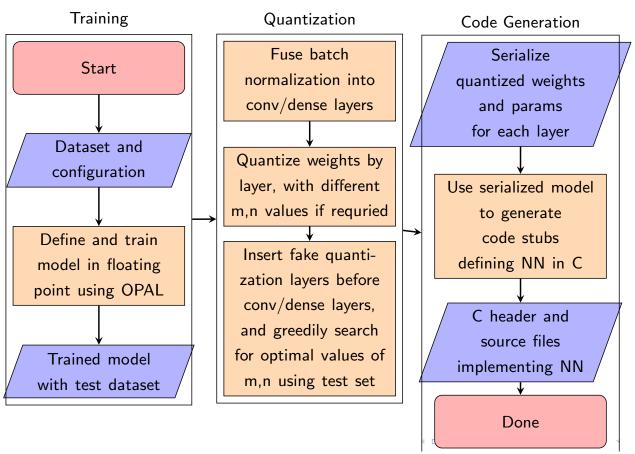
Batch Normalization

- ARM's CMSIS-NN does not support batch normalization
- Instead, batch norm layers must be manually fused with convolutional layers
- Batch normalization is formulated as:

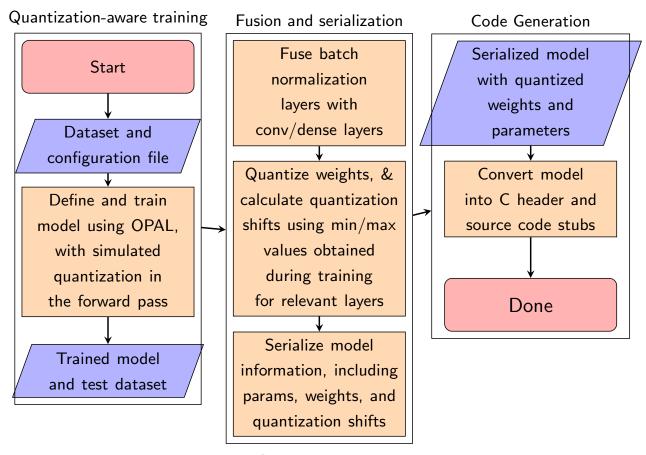
$$\hat{F}_{i,j} = W_{BN} \cdot (W_{conv} \cdot f_{i,j} + b_{conv}) + b_{BN}$$

- This can be combined with a convlutionatl layer if
 - Filter weights are equal to: W_{BN} W_{conv}
 - And bias weights equal to: $W_{BN} b_{conv} + b_{BN}$

Post-training Quantization

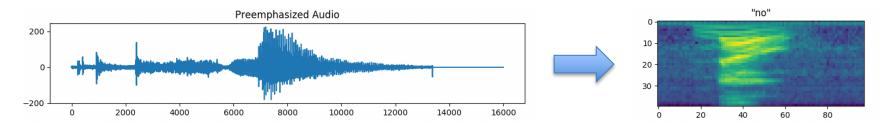


Quantization-aware Training



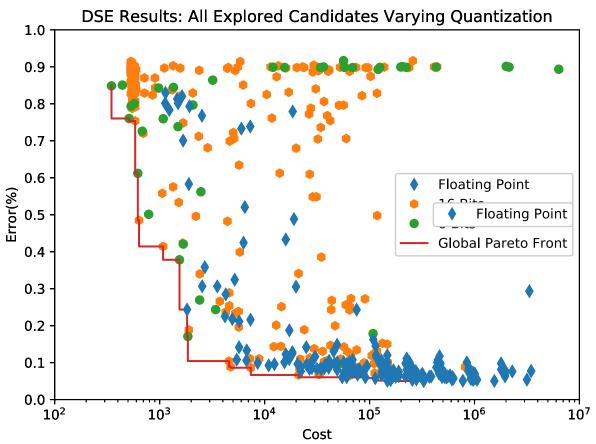
Experimental Setup

- How do quantized networks compete with FP networks?
- Evaluated with the Google commands dataset:



- Evaluated designing CNN, Keras to CMSIS-NN
 - Floating point weights
 - 8- and 16-bit weights, per layer $Q_{m,n}$ formatting
 - Cost function: MACs, weighted by bit width

Quantized vs. Floating-point Weights



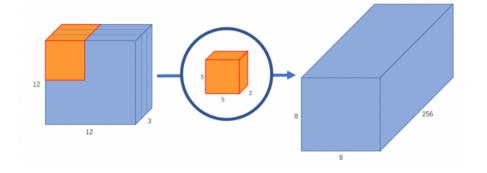
EPEPS'19, 6-October-2019 © 2019 Gross and Meyer

Experimental Setup

- Can we find designs that fit on the STM32L4?
 - Using STM32 Cube.AI to generate optimized C
- Evaluated with the Google commands dataset
- Evaluated designing CNN, Keras to STM32 Cube.Al
 - Floating-point weights
 - Convolution, and depth-wise separable convolution
 - Cost function: memory footprint

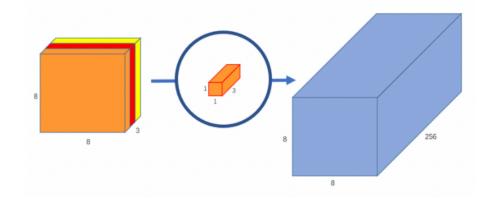
Recall: Convolution is Complex

- N input channels
- M output channels, or feature maps
- M sets of N $k \times k$ filters, or kernels, and M bias terms
- This sums to *N M k*² weights



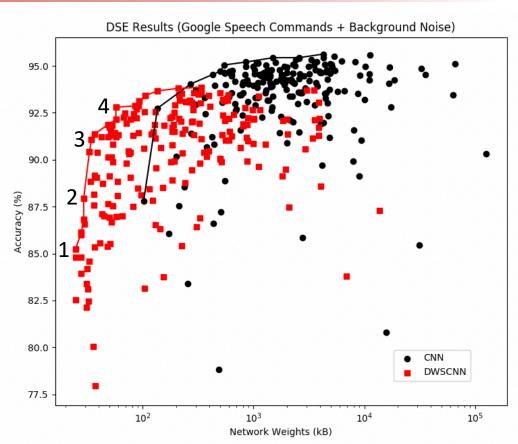
Depth-wise-Separable Convolution

- Transformations can reduce the complexity of convolution
- DWS convolution operation separates convolution into:
 - A depth-wise step, and
 - A point-wise step
- This sums to $N(M + k^2)$ weights
- This is employed by MobileNets to reduce model complexity



Memory Footprint Results

#	Acc (%)	Weights	MACs	Weight Mem. (kB)	Activation Mem. (kB)	Latency (ms)
1	84.8	6336	445k	25.54	60.13	107
2	88.8	8672	781k	30.28	60.13	153
3	91.2	10784	1.59M	35.61	245.13	DNF
4	92.8	16791	2.37M	58.92	120.25	DNF



39

Cavatassi, Gross, and Meyer, tinyML 2019

EPEPS'19, 6-October-2019 © 2019 Gross and Meyer

Conclusions

- Abundant data and compute power is ushering in the era of ubiquitous machine learning
- Efficient deep learning requires
 - Careful hardware design
 - Careful software optimization
- Custom hardware orchestrates data movement, and facilitates model compression
- Architecture search tunes model structure
- Applications, architectures, and automation must cooperate to unlock the promise of deep learning