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Machine Learning: The 4t Revolution?

 Machine learning is everywhere rsipvision.com
* ML has a lot to offer
* Medicine!

— Automatic diagnosis using AV g )
computer vision NG
— Outperform human docs

* Transportation!

— Self-driving vehicles
will be safer and
more efficient
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Machine Learning: The 4t Revolution?

* Productivity!

— Natural language processing enables voice assistants,
chat bots, and automatic translation

— Helps us connect with each other and institutions

* Farming!
— Time-series forecasting makes it
possible to predict crop yield

— Reduces costs for farmers and
consumers alike
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ML is All About the Data

* Basic idea: given some data describing some
system, can SW build a model?

* Computer vision

— Given lots of MRIs, learn which have tumors, {i&aA
and which do not S

— Given lots of pictures of road signs, learn
which are stop signs, and which are not

* Forecasting

— Given past environmental conditions and
tomato yields, learn to predict future yield
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Example: Linear Regression

Output
A

f(X)=myx+b;
f(X)=myx+b,

i

. .

Input

Machine learning is an automatic approach to finding “good” values for m and b
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What Could Possibly Go Wrong?

* fcan be fragile

— Small (imperceptible, even) changes in input can
result in dramatic changes in output

e fcan be obtuse
— Your doctor says you have a tumor

— ML says you do not ...
— ... but it isn’t clear why, from the math
e fcan be biased

— ML learns relationships between data

— But correlation is not causation, and ML cannot tell
the difference
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The Algorithms Aren’t Alright

* A little about me

* Brief overview of machine learning
* Introduction to deep learning

* Challenges in deep learning

— Robustness: can learning algorithms be defeated?

— Explainability: can we justify why deep learning
makes any given choice?

— Bias: can we make learning algorithms fair?
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First, a Little About Me

 Computer scientist and engineer by training
— U of Wisconsin BS'03
— Carnegie Mellon U, MS’05, PhD’09
— University of Virginia, Postdoc, 2009-2011

 Professor of ECE at McGill since 2011

* Research on computer system design
— Making computers work when they’re broken
— Making it hard to hack airplanes

— Making machine learning o
software (hardware) faster "_@?SS LLI

RELIABLE SILICON SYSTEMS LAB
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Brief History of Machine Learning

Ada Lovelace, 1815-1852

* Artificial intelligence is as old
as computing

— Computing is older than you think
— The first programmers debated it!

* Deep learning dates back to
the 1940s

— Has fallen into and out of
fashion several times, and

— Has not been practical until
recently
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Why is Machine Learning Hot Today?

* Unprecedented computing power
(- -
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Typical Machine Learning Flow

* Collect, prepare data THIS 15 YOUR MACHINE LEARNING SYSTEM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT

e Configure ML model

THE ANSWERS ON THE OTHER SIDE.
_ M Od E| structu re’ etc WHAT IF THE ANSWERS ARE WRONG? )
* Train and evaluate JUST STIR THE PILE UNTIL

THEY START LOOKING RIGHT.

* Deploy ML model!

Source: xkcd.com
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Data Collection and Preparation

* Datais destiny
— What you collect determines what you can learn

* Input features

— Columns describing the characteristics of a data point

* Output features
— Columns representing what should be learned, given

inputs
Sunlight Co, Tomatoes
(Hours) (ppm) (Kg)

8 500 10

10 650 12
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Data Collection and Preparation

Data is imperfect

Noisy measurement 500? Or 550?

Missing columns Temperature?

Correlated columns Temp1 and Temp2?
Insufficient rows Enough days?
Unrepresentative rows Enough variation in days?
Unbalanced classes Enough variation in yield?
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Training and Evaluation

ML algorithms start as
blank slates

* Training adjusts internal
variables to reduce error
— Try a data point
— Make adjustments

— Repeat!

* Deploy! -
— ... and hope you used the right data

14
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Types of Machine Learning

* Regression and kernel methods
* Decision trees

— Random forests

e Neural networks

— Deep learning
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Regression and Kernel Methods

* Regression: fit an equation (e.g., a line or
polynomial) to data

* Kernel methods: fit an equation so it divides data
(e.g., above the line, cats, below, dogs)
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Decision Trees

e Subdivide data based on input values
— E.g., if sunlight > 8 hrs, and CO, < 500 ppm,
then 10 Kg of tomatoes

 Random forests combine many trees with
decisions in different orders o)

<$500 >=$500

[ transactions in last day J l transaction tlmc

.4&

Kalyankrishnan, et al., CIKM 2014
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Neural Networks

* From a single neuron (perceptron), to
10s of layers of 100s of neurons (deep learning)

* |nput features are carefully selected

* Weights w are selected through training
Multiply

Accumulate

Activate

o —» a

B¢
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Multilayer Perceptrons

* Many neurons!

— Learn more complex
relationships

* Requires more data

* Takes longer to
compute

— Pick hyperparameters
to balance accuracy
and latency
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Convolutional Neural Networks

Input Conv. Filters Pooling Downsampled Fully-

Images Connected
Layers

Image
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Deep Learning

* Deep networks extract features automatically

Deep Neural Network
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edges combinations of edges object models
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Deep Learning is Hard

* Deep learning requires a lot of data
— For computer vision, 10s of gigabytes
* Deep learning requires a lot of computation

— 100s of millions of computations per data point
— 100s of millions of data points
— 100s of training runs to get the weights right

* Correctly structuring the algorithm requires the
right tools and expertise

— 100s of trillions of different graphs are possible

And that’s not all that can go wrong
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Robustness

e fcan be fragile
... because algorithms don’t learn the way we do

* |f we change the right thing in an input, we can
control (disrupt) the output of the algorithm

‘Horse’

‘How are you?’ X0.01 ‘Open the door’

Gong and Poellabauer, l1oTSec 2018
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Robustness

‘gﬁ RSSI Dawson HPL2019

SPEED
LIMIT

Athalye, et al., ICLR 2018
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Caveats

* Adversarial examples require knowledge of the
algorithm being attacked

e Self-driving cars face greater challenges than
strategically defaced stop signs

* Take away: be careful you entrust to ML, because
it can be attacked
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Explainability
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Where are we on trust?

Scientists are developing a multitude of artificial intelligence algorithms to help radiologists, like this one that
lights up likely pneumonia in the lungs. ALBERT HSIAO AND BRIAN HURT/UC SAN DIEGO AIDA LABORATORY

Artificial intelligence could revolutionize medical care.
But don't trust it to read your x-ray just yet

By Jennifer Couzin-Frankel | Jun. 17,2019, 12:45 PM [SCIGnCG]
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Caveats

* New approaches to algorithm design are needed
to increase transparency

* New protocols are needed for collaboration with
ML algorithms

* Take away: be careful what you entrust to ML
because it may not be able to explain itself
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Bias

e fcan be biased
... because humans are biased

 |f algorithms make decisions that affect people,
extra care is needed to ensure fairness
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Algorithmic Decision-making FTW!

* Machine learning can improve consistency in
decision making

* Consider: asylum judges and loan officers

— Timing of the decision is correlated with decision

— Past decisions are anticorrelated with future
decisions
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Bias in Al

* Do we know we have the right data?

* College admissions

— What makes a successful student?
* Insurance

— What makes someone a risk?
* Mortgages

— Why do people default?
* Sentencing

— Why causes recidivism?
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Crosscutting Issue: Accountability

* When something does go
wrong, who is at fault?
* All stakeholders!

— Data providers
— Algorithm designers
— Algorithm integrators

 European Union is a world leader in ethical Al
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Conclusions

* ML is really here, and has a lot to offer!

Medicine, transportation, productivity, agriculture, ...

* Data is destiny

* M
* M

If you haven’t measured it, ML can’t learn it
. must be made robust
| would benefit from being explainable

* M

| cannot be allowed to be biased

* Practitioners are responsible for appropriate data

CO

T RSSL

llection, training, evaluation, and deployment!



Thank you!

http://rssl.ece.mcgill.ca

@ RSSL Dawson HPL 2019 © 2019 Brett H. Meyer

34



