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Abstract—Adding redundant components is a well known
technique for replacing defective components either before ship-
ment or in the field, resulting yield improvement and consequently
cost reduction. However, most yield improvement strategies
utilize redundant components only when another component
fails (i.e., cold spares). In this paper, we investigate the cost
and performance implications of employing hot spares in multi-
core single-instruction, multiple-thread (SIMT) processors. Hot
spares are available to increase yield (and reduce costs) when the
components are defective; otherwise, they can be used to improve
performance in the field. Starting with a baseline architecture
with six cores, and 32 lanes each, we added three hot spare
cores, with two lanes each. When we make the lanes of the hot
spares available to replace defective lanes in the baseline cores, we
observe that expected performance per cost improved more than
2.5 and 1.7 times relative to systems integrating no redundancy
and cold spares, respectively.

I. INTRODUCTION

As manufacturing processes scale to smaller feature sizes,
devices are more likely to experience early performance degra-
dation, and even failure in the field [1]. Furthermore, manufac-
turing devices that operate according to their specification in
the first place is also increasingly challenging: yield losses are
mounting due to systematic and random defects [2], as well
as parametric failure due to process variation [3].

Yield losses increase the cost of each die; to control such
cost increases, ICs can be over-provisioned in several ways [4]:

• by increasing design margins (over-engineering),
• by implementing redundant circuitry (functional unit

or microarchitectural redundancy), and
• by integrating spare cores (and other components).

Strict design margins (e.g., which require larger features that
are more resilient to defect) can be used to improve every
aspect of a system, at the cost of system performance [5].
Alternatively, micro-architectural redundancy can be added to
improve yield in a targeted fashion. However, this requires
steering logic (e.g., multiplexors) to connect redundant compo-
nents when needed, which also results in performance loss [6].
Entire redundant cores can also be allocated to improve yield.
At the first glance, core sparing seems to be a simple and
effective way to not only address defects in the system, but also
improve performance. Coarse-grained redundancy, however,
is not cost-effective in multi-core systems with few cores,
where a redundant core’s relative area is considerable [7]; such
techniques have seen adoption in larger systems [8], [9], [10].

Multi-core single-instruction, multiple-thread (SIMT) sys-
tems are especially well-suited to incorporating redundancy at
multiple granularities, as there are multiple levels of design
abstraction at which components are replicated for application
performance improvement: (a) the system, which consists of
multiple thread-parallel cores; and, (b) the cores, each of which
consist of a single front-end unit and multiple, data-parallel
processing elements (lanes). We have previously investigated
cost trade-offs in application-specific SIMT architecture with
cold spare components [11]. Such components are only ac-
tivated when needed to replace a defective component. We
observed that shared redundant microarchitectural elements
reduce cost the most effectively, in this case.

In this paper, we extend our prior investigation by ex-
ploring the performance and cost impliciations of allocating
hot spare components. These components improve yield by
covering defects, when present, but can otherwise be used
to improve performance over the baseline. Integrating such
components presents additional challenges compared with cold
spares: hot spare components must be allocated in such a
way that the programming model is not disrupted. As before,
we allocate spare cores, lanes, and shared-lanes, but this
time enable these components for performance improvement
when possible. To determine the relative effectiveness of these
different applications of redundancy, we utilize them in the
context of a case study system inspired by the NVIDIA
GeForce GTX-260 GPGPU. To evaluate designs with hot
spares, we introduce a new metric, expected performance per
cost, E[P ]/C. E[P ]/C captures the performance and cost of
a multi-core SIMT system by considering the population of
dice that results from a given defect density. The performance
of each possible configuration is weighted by its likelihood
of occurrence, thereby accounting for the availability of hot
spares to improve performance when they aren’t needed to
replace defective components. By employing the framework
presented in this paper, system architects can explore a wide
range of performance-cost enhancing design alternatives in
the early stages of the design process, and arrive at the
configurations that will generate maximum performance per
cost per wafer.

II. RELATED WORK

Multi-core processors and SoCs are quickly becoming
the dominant architecture as technology scaling improves
the performance and reduces the fabrication cost, and the
power of complex cores [12], [13], [14]. While individual



core complexity is tapering off, however, the larger die size,
increasing device counts, and higher defect rates in advanced
manufacturing technologies are leading to lower yields [15].
Redundancy is commonly added to address this problem [2];
over-engineering is a well-known alternative [5].

Redundancy is a well-studied technique for improving yield
and reliability, and has been previously employed at a variety
of levels of design abstraction. Repetitive structures have been
leveraged in memories, PLAs, and FPGAs [16], as well as
processors [17]. Prior work has explored the allocation of
cold spare microarchitectural units [7], [18], [19]. The cost
of microarchitectural redundancy, however, is high, since the
redundancy can only cover defects in a limited number of
components. For systems with many cores, core-replication
generally performs better [6]. Core sparing, however, is not
a panacea: recent work has also shown that when multi-
and many-core systems share redundant components, cost
is reduced relative to conventional resource sparing meth-
ods [6], [20], [11]. We expand upon this work by allocating
hot-spare cores as well as hot-spare-, and hot-shared-spare-
subcomponents.

Prior work has explored how to quantify performance in
the context of defects [7], [18], [6]. Like our work, these all
calculated system performance by simulating all possible sys-
tems with defects and weighting their contribution to expected
performance by the likelihood of each configuration occurring.
In our work, which requires detailed multi-core performance
simulation, such an approach is intractable: Therefore, we
introduce an approximation for expected performance in order
to reduce evaluation complexity with an acceptable loss in
accuracy.

Recent work has also investigated the utilization of redun-
dancy to facilitate graceful performance degradation and ex-
tend processor lifetime [19], [18], [21], [22]. These approaches
substitute defective components with redundant ones, or scav-
enge for functional subcomponents within failed components,
extending the useful lifetime of the system while reducing
the negative performance impact of defects and failures. Such
an approach to redundancy in general purpose architecture,
however, is very costly in terms of performance. We show that
this is not the case for SIMT architecture; to the best of our
knowledge, ours is the first research to evaluate the opportunity
to improve both the performance and yield of SIMT systems
using hot redundant resources.

III. MULTI-GRANULARITY HOT SPARING IN SIMT

SIMT systems consist of components replicated at different
levels of granularity (core and lane). This gives designers the
opportunity to apply redundancy at the same granularities from
fine- (lane) to coarse-grained (core), in order to address manu-
facturing defects. However, redundant units that are integrated
but not utilized are wasted if left cold; we therefore propose
integrating hot spare units that can be easily used to improve
performance when not needed to cover defects.

We illustrate a multi-core SIMT system in Figure 1, im-
plementing different sparing regimes. Three different types of
cores are illustrated: 1) main cores (MCores); 2) narrow, hot
redundant cores (RCores) that make spare and shared spare
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Fig. 1: Architecture of a multi-core SIMT system with hot
spare components.

lanes available for use by MCores and RMCores; and, 3) wide
hot redundant main cores (RMCores) for core sparing.

Each core (MCore, RCore, and RMCore) consists of a
front-end unit, including an L1 instruction cache (I$), hardware
thread contexts (HTC), and instruction decoder, processing
elements (lanes), and a back-end, write-back unit. Each lane
likewise consists of a arithmetic and logic unit (ALU), register
file (Reg), and L1 data cache (D$). Cores communicate with
L2 cache, at the system level, through a crossbar, while L2
cache is connected to RAM via a bus.

A. Redundancy Regimes

We propose allocating redundancy to salvage defective
main cores (MCores) by scavenging for components in re-
dundant cores (RCores) [22], by means of steering logic, or
replacing them entirely with spare main cores (RMCores).
When not covering defects, RCores and RMCores can be used
to improve performance.

We illustrate several multi-core SIMT redundancy strate-
gies in Figure 1:

• Spare lane (SL): a lane from an RCore that is dedi-
cated to an MCore. Up to one defective lane in each
of MCore1 and MCore2 are covered by the pair of
lanes in RCore1.

• Shared spare lane (SSL) [11]: a lane that is not dedi-
cated to a specific core, but can be used if needed by a
small set (two, or three) of cores. Up to two defective
lanes in the pair of cores MCore2 and MCore3 (not
pictured) are covered by the pair of lanes in RCore2.
If MCore2 has two defective lanes, and MCore3 none,
the system remains functional, while it would not if
only spare lanes were available.

• Spare core (SC): an RMCore that can completely
replace an MCore that cannot be otherwise salvaged.



To support current practices in GPGPU programming, we limit
RCores s.t. the number of active lanes is always a power of
two, facilitating thread block mapping and execution without
requiring changes to runtime thread management (e.g., to
explicitly manage processor heterogeneity). Note that we also
assume that spare unit allocation and defective unit substitution
are performed at manufacturing time. It would be, however,
possible to do this at runtime to increase system lifetime when
components wear out; this is the subject of future work.

B. Expected Performance per Cost, E[P ]/C

Performance and cost are influenced by several factors in
multi-core SIMT with hot spares. Each type of hot redundancy,
except core sparing, results in the addition of steering logic:
muxes, de-muxes, and wires are needed to direct signals
to/from a spare lane. These components lengthen the critical
path of the core utilizing them, thereby decreasing its operating
frequency. We capture this effect by synthesizing steering logic
in the context of the FlexGrip GPGPU [23]. The addition of
hot spares can improve performance when the spares are not
needed to mitigate defects. We capture this effect by simulating
the multi-core systems running a variety of benchmarks using
the MV5 performance simulator [24]. System cost is also
affected: area goes up with the inclusion of redundancy, but
cost may decrease if the resulting improvements in yield are
significant enough.

Given these various effects, a question arises: what is
the best configuration to jointly optimize performance and
cost? In order to answer this question, we propose expected
performance per cost (E[P ]/C), a new metric that captures
the effect of hot sparing on system performance and cost.

E[P ]/C is similar to previously introduced metrics such as
yield-adjusted throughput (YAT) [18], performance-averaged
yield (PAY) [19], and E[P ]/Area [25], with two consequential
differences. First, area is not an appropriate proxy for cost:
while all redundancy increases area, not all redundancy im-
proves yield sufficiently to reduce cost. Second, while previous
metrics evaluate the set of possible configurations resulting
from defects in a given system, this is computationally in-
tractable in our case.

1) Cost Model: In E[P ]/C, the cost C is the fabrication
cost of a die [26]:

Cdie =
Cwafer/(Dice/Wafer)

ysys
, (1)

where, Cdie is a function of the cost of a wafer (Cwafer), the
number of dice per wafer, and the yield of the die, ysys; the
number of dice per wafer can be estimated as:

Dice/Wafer =
π × (Radiuswafer)

2

Areadie
− π ×Radiuswafer

2

√
Areadie

2

.

(2)

System yield, ysys in Eq. (1), is defined as the ratio of
working ICs to the total fabricated [2], and is a function of the
component yield. In this paper, we adopt and extend the yield
model we previously developed [11]. We calculate yield based
on the type of redundancy that is utilized in the system (None,
SC, SL, SSL); we previously observed that neither systems

with more than one type of redundancy nor more than one
redundant component of a given type are performance-cost
optimal solutions [11].

For multi-core SIMT, yield is

ysys = ycores × yL2 × ycrossbar × (yRCskel
× yRCL1

)p, (3)

where ycores, yL2, and ycrossbar are the yield of the set of
cores, the L2 cache, and the crossbar, respectively. RCskel
and RCL1 are RCore’s skeleton (anything that is not a RCore-
lane or L1 cache inside the RCore) and L1 cache yield values,
respectively. p is the number of hot spare RCores in the system.
The yield of the main cores (ycores) is:

ycores = Binom(ycore,m, n) =
m+n∑
i=m

(
m+ n

i

)
(1− ycore)m+n−i(ycore)

i, (4)

where m and n are the number of required MCores and spare
MCores (RMCores), respectively, in the system. The yield of
a single core (ycore) is:

ycore = ylanes × yL1 × yskel, (5)

where ylanes, yL1, and yskel are the yield of the lanes, L1
cache, and everything else, respectively.

When RCore lanes are utilized as spare lanes, the yield of
the lanes ylanes = Binom(ylane, k, l), where k is the number
of required lanes in each MCore (e.g., 32) and l is the number
of spare lanes for each MCore (the number of redundant lanes
available to an MCore from an RCore).

If RCore lanes are utilized as shared spare lanes, instead
of calculating the yield of an individual core (ycore, Eq. (5)),
we divide the system into groups of three cores (two MCores
and one RCore) and calculate y3core. This is necessary since
the yield of the two MCores and the RCore are interdepen-
dent [11]. The yield of each of these groups is:

y3core = Binom(ylane, 2k, l)× y2L1 × y2skel. (6)

Note that the yield of each RCore’s L1 and skel are accounted
for in the system yield formula Eq. (3).

2) Expected Performance: E[P ] is the expected perfor-
mance of a given configuration in the presence of defects:

E[P ] =
∑

Ci∈{S}

Perf(Ci)× Prob(Ci), (7)

where S is the generating set of the baseline (no defects)
and derivative configurations (with defects) of a system. Perf
is the configuration’s performance (the inverse of benchmark
execution time), and is determined with detailed simulation
that accounts for the presence of defective components.

Prob is the probability of the configuration’s occurrence
in the population of dice given a particular defect density.
Some configurations with many defects and consequently
low performance may be unlikely to occur. Therefore, the
performance of a given configuration must be weighted by
how often it appears in a given population of dice. The number
of resulting performance simulations may be large, however.
Consider a system with six cores (MCores), each with 32 lanes,
and three redundant cores (RCores), each with two shared lanes



that can replace defective lanes in the MCores. For such a
system, there are more than six billion derivative configurations
that meet the performance requirement of at least six functional
MCores.

To reduce the cost of evaluation, most configurations can
be grouped into a much smaller number of generating configu-
rations. For instance, some defects may result in configurations
that are identical from a performance perspective, such as when
any single MCore in the system has a defective lane, or when
any single core is defective. such symmetric configurations can
be safely excluded from S, and their probability of occurrence
combined with that of the generating configuration. Doing
so in the case of our example above reduces the number of
required performance simulations to 33. Unfortunately, even
in this case evaluating each configuration in the generating set
requires more than 792 hours on a 3 GHz Core i7 platform
with 8GB of RAM.

3) Estimating E[P ]: To control the computational cost of
design evaluation, we estimate E[P ] with Ê[P ] ≤ E[P ] by
limiting the configurations we consider possible. By evaluating
only those configurations with high likelihood of occurring,
we can achieve a reasonable estimate at a fraction of the
computational cost.

First, we assume that S = {C0, C1, ..., Cn} such that
Prob(Ci+1) ≤ Prob(Ci). Then,

Ĉi =

Ci
i∑

j=1

Prob(Cj) ≤ Th

Null otherwise

(8)

where 0 < Th ≤ 1 is selected to control the computational
cost of the set of simulations. Now, Ŝ = {Ĉ0, Ĉ1, ..., Ĉn}, and
therefore

Ê[P ] =
∑

Ĉi∈{Ŝ}

Perf(Ĉi)× Prob(Ĉi), (9)

when Perf(Null) = 0.

We observe that Ê[P ] ≤ E[P ] and that as Th → 1,
Ê[P ]→ E[P ]. This conservative calculation helps us to avoid
costly performance calculations that contribute little to E[P ].
Determining how to select Th is the subject of future work.

We have observed in practice that dice with more than
one defective lane, for instance, are highly unlikely [11]; we
therefore limit ourselves to the cases where all components
are functional (no defects), where one lane in the system is
defective (when considering SL and SSL), and where one
core in the system is defective (when considering SC). These
cases constitute more than 94% of the dice population for our
example system whether considering SL, SSL, or SC, reduce
the required simulation by 90%. This significantly reduces the
number of systems for which we must calculate Prob.

4) Probability of Occurrence: Calculating the probability
of occurrence Prob is similar to calculating yield, but rather
than determine the fraction of systems that satisfy a particular
set of requirements (number of cores, lanes, etc.), we calculate
the fraction of systems that have exactly one given configura-
tion. The probability that a given configuration occurs is

pCi
= pcores × pcrossbar × pL2$ (10)
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Fig. 2: Case study system.

where pL2$ and pcrossbar are the probability of occurrence of
the L2 cache and crossbar, respectively. We assume the yield of
these components is 1 (see Section IV-B); pL2$ and pcrossbar
are therefore 1.

pcores is the probability of observing a particular set of
cores given the components that are present: the number of
MCores nmc, the number of RCores nrc, the number of total
MCore lanes nml, and, the number of total RCore lanes nrl;
and, the number of components that are defective: the number
of defective MCores ndmc, the number of defective RCores
ndrc, the number of defective lanes in an MCore ndml, and,
the number of defective lanes in an RCore ndrl.

When considering the application of spare lanes, for in-
stance, the probability of observing a system with a one MCore
with one defective lane is determined by

pcores =

(
nmc
ndmc

)
× pndmc

core′ (nml, ndml)×

p(nmc−ndmc)
core (nml)×

(
nrc
ndrc

)
× pndrc

core′(nrl, ndrl)

× p(nrc−ndrc)
core (nrl), (11)

where pcore is the probability of having all nl lanes operational
(nml and nrl for MCores and RCores respectively),

pcore(nl) = ynl

lane × yskel × yL1$, (12)

and where pcore′ is the probability of having nl − ndl op-
erational lanes (in the case study system and utilizing SL,
ndl = 1),

pcore′ (nl, ndl) =

(
nl
ndl

)
× y(nl−ndl)

lane × (1− ylane)ndl × yskel.
(13)

pcores can be derived for the SSL and SC cases in a similar
fashion.

IV. EXPERIMENTAL SETUP

To determine what form of hot spare redundancy is most
beneficial for a particular (a) configuration and (b) application,
and compare these results with that when cold spares are used,
we performed a set of experiments on a case study system
inspired to by the GForce GTX-260 GPGPU from NVIDIA
Co. We evaluated the performance and cost of a variety of
multi-core SIMT configurations with hot and cold spare lanes
(SL), shared spare lanes (SSL), and spare cores (SC), on a
set of diverse benchmarks. The GTX-260 has six streaming
processors (cores), each with 32 CUDA-cores (lanes) [27];



we integrate an additional three redundant RCores with two
lanes each when considering SL and SSL redundancy, or
an entire core (RMCore) when considering SC redundancy.
RCores (red) are distributed among MCores in such a way that
each MCore is located beside only one RCore, as illustrated
in Figure 2). We have previously observed that many redundant
lanes are not helpful in terms of cost reduction in the context
of SIMT processors [11], we did not consider more than two
lanes per each RCore.

A. SIMT Configurations and Benchmarks

We used MV5 [24] to simulate the performance of each
SIMT configuration we considered. We assume a number of
architectural parameters consistent with the literature [28],
including: 0.6 GHz processor clock frequency, 16 KB L1
instruction cache and a unified 4 MB L2 cache per core, 300
MHz crossbar, and 300 cycle memory access latency. Each
MCore has 64 KB L1 data cache, while each RCore has 8 KB
L1 data cache. The number of hardware threads per core is set
to twice the number of lanes per core (SIMT-depth = 2) for
both kinds of cores (R- and M-Cores) in the system.

We selected benchmarks from some suites:
Minebench [29], SPLASH-2 [30], and Rodinia [31].
The set we selected, Fast Fourier Transform (FFT), Filter
Edge Detection (Filter), Thermal Simulation (HotSpot), LU
Decomposition (LU), Merge Sort (MergeSort), Shortest Path
(ShortestPath), KMeans Clustering (KMeans), and SVM
Learning (SVM), has been previously used in the literature to
evaluate multi-core SIMT performance [24].

B. Cost Estimation

We assume the cost of $3000, radius 150mm, and yield
of 1 for each wafer, and adopt the negative binomial yield
model to calculate the yield of individual components. This
model has three parameters: defect density (λb), the clustering
parameter (α), and block area (Ab) [32], [33]:

yb =

(
1 +

λb ×Ab
α

)−α
. (14)

In 65nm manufacturing technology, we assume λb =
0.025/cm2 and α = 4 [26]. Moreover, we consider the yield
values of D$ and crossbar 1, since inexpensive redundancy can
increase yield dramatically [34].

To estimate component area for yield estimation, we
measured the area of functional units based on a gate-level
synthesis of a SIMT processor, FlexGrip [23]. FlexGrip is a
configurable GPUPU based on the NVIDIA G80 architecture
targeting FPGA. FlexGrip is configurable, and it is possible
to define many architectural parameters such as the number
of cores and lanes. We set FlexGrip to mimic the case study
system (32 lanes per core), and modified it to be compatible
with an ASIC flow by substituting HDL for the IPs it employs.
We synthesized the processor for the 65nm TSMC process,
considering both the timing and area overheads of wires in
the design. We extracted the sizes and the number of ports
for the memories and register files in the implementation and
used CACTI [35] memory models to estimate their areas. The
area measurement of different sub-components of the FlexGrip
GPGPU is reported in Table I.

TABLE I: SIMT Component Area.

Processor Configuration Component Area (mm2)
Tech. size 65nm ALU 0.0915

#(Int. Mult.)/ALU 1 Reg. File 0.9436
#(Int. ALU)/Lane 1 Lane 0.1319

#Lanes/Core 32 Skeleton 1.5801
L1 D$ Size 64KB Core 7.1917
SIMT Depth 2 D$ 1.3901

L2$ Size 4096KB L2$ 46.0652
#Cores 6 Processor 89.2154

C. Performance Degradation with Hot Redundancy

Adding redundancy often increases critical path delay and
consequently ultimately reduces system performance. When
we employ SC in a crossbar-based system, the only perfor-
mance penalty is due to the increased size of the crossbar.
MV5 does not support variation in crossbar delay; however,
since crossbar delay grows slowly, we neglect this performance
degradation in the system [36].

When using hot spare lanes, a main core that utilizes an
SL must slow down to accommodate the additional delay
introduced by steering logic. We measured this delay using
FlexGrip and observed it to be less than 3.2%. Therefore,
whenever an MCore uses an SL, its frequency is decreased
by 3.2%; other cores operate at their highest clock rates.

We expect to observe similar performance degradation
when SSL are utilized. However, the amount of this degenera-
tion varies depending on the number of accessible SSLs (which
affects the delay of the steering logic) as well as their physical
distances to the MCore that they are shared with. Based on
measurements from FlexGrip, this variation is between 4.5%
to 6.8% of the operating frequency of the case study system,
while the observed relative area overhead (the area portion of
added steering logic against the area of a lane) is less than
0.1%.

These decreases in frequency, due to utilizing SL or SSL,
1) only affect the core that is defective and utilizes a spare lane,
and does not degrade to the entire chip’s working frequency if
the processor can independently clock the cores, and 2) does
not result in the same proportion of performance degradation
for the corresponding core. Memory access latency can, in
some cases, hide the reduction in clock frequency. Calculating
this performance degradation considering delays in memory
interactions is the subject of future work.

V. RESULTS

A. Cost-effectiveness of Hot Sparing

We conduct a variety of experiments to investigate the
effectiveness of hot-sparing. We begin with a comparison of
the cost-effectiveness of cold and hot sparing across a wide
variety of system configurations utilizing spare cores (SC),
spare lanes (SL), and spare shared lanes (SSL). In each case,
we allocate a single type of redundancy. We consider n SC,
l SL, and zero to two SSL, where n ∈ SC = {0, 1, ...,m},
l ∈ SL = {0, 1, ..., k}, for a system with m cores and k lanes
per core. SSLs are only allocated when there is more than one
main core in the system. We then calculate the average relative
cost reduction (ARCR) of the defect-tolerant system. ARCR
is defined as the change in cost relative to the baseline design
with no redundancy. Cost is calculated as in Section IV-B.
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Fig. 3: Comparison of cold- and hot-sparing under different
sets of configurations and redundancy techniques.

In Figure 3, we divide configurations into four groups
with similar parameters and cost reduction behavior: those that
benefit from (a) no redundancy, (b) core sparing, (c) spare lane
sharing, and (d) lane sparing. The systems in each group are
specified by the tuple (Cores, Lanes, HTC), where each value
is given as a range. The ranges associated with each group are
indicated on the x-axis; the y-axis indicates the ARCR of the
group of systems for each type of redundancy.

When systems utilize cold (C-) or hot (H-) spare cores,
we observe that there is no difference between hot and cold
sparing. With both types of redundancy, main cores in the
system are replicated and result in the same area overhead
and yield improvement. When systems utilize C-SL or C-
SSL, their ARCR are at most 1.5% better than H-SL and H-
SSL respectively in all different groups of presented systems.
This difference is observed because cold sparing does not
require RCore front-end and back-end units when integrating
redundant lanes to the system. This results in lower area
overhead and consequently higher yield. Although cold sparing
outperforms hot redundancy, this advantage is marginal; by
trading 1.5% in cost, on average, designers can equip their sys-
tems with hot spares that often improve system performance.

B. E[P]/C Improvement of Hot Sparing

In Figure 4, we illustrate the normalized expected perfor-
mance per cost (E[P ]/C) for different types of redundancy
(bar graphs), normalized to the baseline-system (without re-
dundancy). The left y-axis (bars) indicates the E[P ]/C of the
systems normalized to the baseline; the right y-axis (lines)
indicates the percentage improvement in E[P ] alone relative
to the baseline.

Four applications (FFT, Filter, ShortestPath, and Merge-
Sort) show better E[P ]/C (nearly 1.6, 1.7, 1.2, and 1.3x,
respectively) using hot spares than cold, over all types of
redundancy. These application are able to make effective use of
the narrow hot spares, resulting in performance improvement.

We do not observe such improvement for all applications.
For example, SVM and LU show only marginally better
E[P ]/C with hot sparing than cold. For these applications,
E[P ] improvements are small, at most 7% over than baseline
system. These applications clearly make less effective use of
the narrow spare cores, possibly as a result of presence of
a greater number of synchronization points in these appli-
cations [29], [30]: the wide cores (MCores) must wait for

the completion of thread blocks mapped to narrow cores
(hot RCores). While these applications experience poor E[P ]
improvement, the reduction in cost results in nearly 1.5 times
improvement in E[P ]/C compared to the baseline system;
similar improvement is observed from cold sparing.

On the other hand, there are some applications (HotSpot
and KMeans) that not only do not show any improvement in
E[P ]/C in the presence of hot spares, but also experience sig-
nificant performance degradation. Even though cost is reduced
by adding redundancy to the system, E[P ]/C decreases: the
cost reduction is not big enough to compensate for the loss
of E[P ]. We hypothesize that this performance loss is due to
data-dependencies [31], [29]: performance is constrained by
that of the narrow RCores when the wide MCores idle and
wait to receive data from them.

Ultimately, the decrease in E[P ]/C for some applications
in the presence of hot sparing, is not a cause for concern for
designers: hot spare units can be disabled, even at runtime,
rendering hot spares cold. In the case study system, in the worst
case, this transformation has a marginal overhead in terms the
of cost (less than 4%), while hot spare techniques improve cost
of the baseline system more than 31%.

VI. CONCLUSION

We investigated how the application of hot redundancy in
multi-core SIMT systems can not only improve yield, but also
increase performance. We introduced a new metric, expected
performance per cost (E[P ]/C), and showed that there are
some applications that benefit greatly from hot sparing, and for
those that do not, the overhead associated with leaving spares
cold is not significant. To support this effort, we synthesized
the FlexGrip GPGPU in an ASIC flow to determine the area
of processor components for use in our yield models.

We observed that when systems consist of a few narrow
cores, the area overhead of hot sparing compared to cold
is considerable and results in 1.5% lower average relative
cost reduction (ARCR). However, this cost overhead becomes
negligible (less than 1%, in terms of ARCR) when systems
integrate many wide cores. On the other hand, we observed that
the performance improvement gained by hot sparing reaches
nearly 20% for some applications in a case study system
of six 32-lane cores and three two-lane redundant cores.
Based on this performance improvement, we observe that
when the case study system is equipped with RCores, some
applications experience 1.7 to 2.5x improvement in E[P ]/C
compared to the system without redundancy, while the addition
of those RCores increases the processor’s area less than 5%.
By employing hot sparing and tolerating a marginal increase
in the size of a SIMT processor, designers can expect to see
impressive performance per cost improvement.
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