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ABSTRACT
Redundancy is now routinely allocated in circuits, microar-
chitectural structures, or at the system level, to mitigate
mounting manufacturing yield losses. In this paper, we
explore the effect of core-, lane-, and, a new redundancy
technique, shared-lane-sparing on application-specific SIMT
cost. The structure of multi-core SIMT systems makes them
particularly suitable for applying redundancy at multiple
levels of granularity. Just as the performance of thread-
or data-parallel applications can be improved with greater
core or lane count, respectively, the yield of thread- or data-
parallel systems can be improved with core- or lane-sparing.
At times, however, applications and systems fall into a third
category: they benefit from one or the other category, but
not exclusively. In this case, we propose spare lane shar-
ing, which reduces the cost of such systems by allowing
one of two neighboring cores to make use a redundant lane
if necessary. We have evaluated core-, lane-, and shared-
lane-sparing applied to multi-core SIMT systems executing
a variety of benchmarks. We found that configurations in
performance-cost pareto-optimal front for some applications
benefit most from core sparing, with up to 25% cost reduc-
tion. However, for most of applications, shared-lane-sparing
outperforms lane-sparing, reducing cost by up to 20%.

1. INTRODUCTION
As manufacturing processes scale to smaller feature sizes,

devices are more likely to experience early performance degra-
dation, and even failure in the field [1]. Furthermore, man-
ufacturing devices that can operate according to their spec-
ification is also increasingly challenging: yield losses are
mounting, due to systematic and random defects [2], as well
as parametric failure resulting from process variation [3]. To
control costs, silicon systems must now be over-provisioned
at the circuit level (e.g., guard-bands and noise margins
in design rules), microarchitectural level (e.g., using redun-
dant execution units), or system level (e.g., using redundant
cores) to ensure that systems with some defects can satisfy
specifications and can, therefore, be sold.

We hypothesize that, given different performance and cost
targets, different redundancy strategies emerge as most cost-
effective. Yield can be improved in a number of ways [4]:

• by increasing design margins (over-engineering),

• by implementing redundant circuitry (functional unit
or microarchitectural redundancy), and

• by integrating spare cores (and other components).

It is clear from industrial adoption that disabling defec-
tive cores improves yield by salvaging otherwise defective
dice [5][6]; the recovered dice occupy a different (lower cost)

market segment, but the fact that they can be sold at all re-
duces the manufacturing cost of the defect-free dice. How-
ever, a question remains: under what circumstances does
such coarse-grained redundancy optimize yield?

In this paper, we investigate the application of redun-
dancy to improve the yield of multi-core single-instruction,
multiple-thread (SIMT) architectures [7]. Application -spe-
cific SIMT architectures [8][9] present a unique opportunity
for yield improvement, as there are multiple levels of de-
sign abstraction at which components are already replicated
for application performance improvement: (a) the system,
which consists of multiple thread-parallel cores; and, (b) the
cores, each of which consist of a single front-end unit and
multiple, data-parallel processing elements (lanes). Because
different applications exhibit differences in parallelism, dif-
ferent configurations (e.g., data cache size, number of cores,
number of lanes per core) are expected to strike the best
performance-cost trade-offs. As the relative mix of com-
ponents (cores vs. lanes) changes, the most cost-effective
strategy for improving yield is also expected to change (re-
dundant cores vs. redundant lanes). While systems with
many narrow cores clearly benefit the most from core spar-
ing, and systems with a few wide cores benefit the most from
lane sparing, a number of applications and systems fall in be-
tween: not enough cores are present to amortize the cost of
a spare, and application-specific performance-optimal cores
are not wide enough to absorb the cost of an extra lane. In
this context, we propose the allocation of a shared spare lane
(SSL) which can be used by either of two neighboring cores
to replace a defective lane.

We investigate the opportunity to reduce manufacturing
costs in the presence of random defects by allocating spare
cores, lanes, and shared lanes, in SIMT architecture. We ob-
serve, when considering the space of performance-cost trade-
offs, that while some design points (low-cost designs, in par-
ticular) call for no redundancy, and others for core- or lane-
sparing, many benefit the most from shared spare lanes. Our
experiments reveal that an SSL can be integrated with neg-
ligible area overhead, and only 1.3% timing overhead, while
reducing costs significantly, especially for applications that
call for systems that mix thread- and data-parallel execu-
tion. Our contributions are (1) the introduction and eval-
uation of shared spare lanes, including the development of
yield models; and, (2) a characterization of core-, lane-, and
shared-lane-sparing in the context of performance-cost opti-
mal, application-specific multi-core SIMT processors.

2. RELATED WORK
Application-specific and reconfigurable single-instruction,

multiple-data (SIMD) processors are emerging as a low-cost
alternative to general-purpose multi-core systems. For ex-
ample, Lyuh et al., [10] proposed a reconfigurable processor
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Figure 1: Architecture of SIMT multi-core processors.

using dynamically partitioned SIMD processor for multime-
dia applications. Shohei et al., [11] proposed a new proces-
sor architecture, XC, which can dynamically switch between
SIMD and MIMD to get better performance for image pro-
cessing applications. In this paper, we investigate strategies
for improving the yield of application-specific SIMT proces-
sors; the application of such techniques to reconfigurable
processors is the subject of future work.

Redundancy is a well-studied technique for improving yield
and has been previously employed at a variety of levels of
design abstraction, e.g.: at the circuit level, by taking ad-
vantage of repetitive structures [2][12], or designing multi-
purpose functional units [13]; and, at microarchitecture and
system level, by allocating spare cores and functional units
[14][15]. To best of our knowledge, our work is the first to
investigate the effect of shared redundant resources on man-
ufacturing cost reduction for SIMT architectures.

As a consequence of the growing interest in system-level
redundancy, a variety of authors have proposed modeling
or analysis frameworks for evaluating redundancy strategies
in the multi-core era. Several studies have come to the
conclusion that as cores proliferate, core-level redundancy
is the most cost-effective [14][15][4]: lower-level techniques
incur too great an overhead to cover too few possible de-
fects. Shamshiri et al. [16] further observe that spare cores
make burn-in unnecessary. Our work develops yield models
specifically for multi-core SIMT processors, considering their
unique opportunity for yield improvement; we consequently
observe that systems that take advantage of data-level par-
allelism require alternatives to core sparing to achieve cost-
effective yield improvement.

3. MULTI-GRANULARITY REDUNDANCY
A multi-core SIMT processor is depicted in Figure 1 [7].

Each SIMT core is a multi-processor in its own right, but its
redundant functional units (decoder, and write-back) have
been removed to improve power and area efficiency for appli-
cations that exhibit data-level parallelism. Each core con-
sists of a unified front-end unit, including L1 instruction
cache (I$), hardware thread contexts, and instruction de-
coder, processing elements (lanes), and a back-end write-
back unit. Each lane consists of a register file, arithmetic and
logic unit (ALU), and L1 data cache (D$). At the system
level, cores communicate with L2 caches through a crossbar.

SIMT and array-based architectures differ from vector
single-instruction, multiple-data (SIMD) architectures in that
vector SIMD architectures expose the SIMD width to the in-

struction set. As a result, software must operate at the gran-
ularity of the vector width, which is often unnatural for both
programmers and compilers. SIMT and array-based archi-
tectures, on the other hand, present a scalar architecture to
each thread, simplifying programming and compilation and
allowing the hardware to automatically handle data-parallel
execution divergence. SIMT and array-based architectures
differ in that array-based PEs execute in lock-step; SIMT
adds another level of hierarchy, allowing groups of lockstep
lanes to execute in parallel. In this paper, we refer to these
collections of lockstep lanes as cores.

Multi-core SIMT systems simultaneously take advantage
of thread- and data-level parallelism (TLP and DLP respec-
tively): cores can execute different threads of the same ap-
plication, or even different applications, and each core can
execute the same instructions on multiple data elements at
the same time. Different parallel applications have differ-
ent working set sizes and mixes of TLP and DLP; therefore,
different configurations result in optimal performance [17].
This variability in the design space for multi-core SIMT sys-
tems has an important consequence for yield enhancement:
systems optimized for different applications may call for
different redundancy. Fortunately, both the programming
model and physical design of SIMT architectures make im-
plementing redundancy at each of these granularities both
relatively easy and particularly beneficial.

3.1 System Yield
Yield is defined, at the time of manufacturing, as the ra-

tio of working ICs to the total number fabricated [2]. An IC
may fail at manufacturing time for many reasons: random
defects, such as open- or short-circuits due to particle con-
tamination; systematic defects due to an immature design or
fabrication process; or, process variations, which, amongst
other things, may affect IC timing.

Redundancy improves yield by substituting an operational
component for a defective component at manufacturing time,
increasing the salable chip count. However, if no defects are
present, we assume that the redundant component is un-
used. Die cost, therefore, is only reduced if the increase in
salable dice overwhelms the increase is system area.

Based on the system architecture in Figure 1, the system
yield ysys is the product of the yield of different groups of
components, namely the cores, ycores, the L2 caches, yL2,
and the crossbar, ycrossbar:

ysys = ycores × yL2 × ycrossbar. (1)

Row and column redundancy is standard in SRAM arrays;
we assume that the yield of L1 and L2 caches is 1. Fur-
thermore, crossbar yield approaches 1 with the addition of
redundant lines [16]. In this case, the yield of the system is
equivalent to the yield of the set of cores.

3.2 Core Sparing
One straightforward way to improve system yield in ho-

mogeneous multiprocessors is to add spare cores. When a
core is defective, a redundant core can be substituted for it.
In the context of a crossbar-based system, the only perfor-
mance penalty is due to the increased size of the crossbar.

As the number of cores in the system increases, the rela-
tive overhead of a single redundant core goes down. Systems
with many narrow cores (cores with few lanes) therefore
benefit the most from core sparing. Given a system that
requires m operational cores and integrates n spares, where
each core has yield ycore, the yield of the set of cores ycores
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is calculated with the binomial distribution:

ycores =

m+n∑
i=m

(
m+ n

i

)
(1− ycore)m+n−i(ycore)

i. (2)

For the sake of simplicity, hereafter the binomial distribution
will be denoted Binom(y, b, s) for a system with b compo-
nents and s spares, where components have yield y.

3.3 Lane Sparing
The yield of a core is dependent on the yield of its compo-

nents. In this paper, we divide a core into (a) its lanes, (b)
its L1 cache (yL1 = 1), and (c) everything else (skeleton):

ycore = ylanes × yL1 × yskeleton. (3)

Just as system-level homogeneity makes core sparing ef-
fective, core-level homogeneity makes lane sparing effective.
A spare lane can be integrated in a core as depicted in Fig-
ure 2. A core without lane sparing is illustrated in white.
When spare lane S (gray) is integrated, if one of the four
main lanes is defective, the core may continue to function.

We observe from the die photo of AMD Opteron 130nm
processor that the elements of a single lane occupy more than
72% of a the core’s area. Our assumption is that the remain-
ing area is not easily protected at low overhead: while some
units, such as the hardware thread contexts, are repetitive,
the structures are relatively small. Redundancy therefore
offers little coverage relative to the total area of a core [14].

This is especially true in cores with more than one lane:
with each additional lane, the proportion of the core in the
skeleton shrinks. Consequently, we do not protect them by
redundancy within a given core; instead, failure within these
elements can be addressed with core sparing.

Spare lanes effectively improve yield in wide cores with
many lanes. The greater the number of lanes in a core, the
higher the proportion of area dedicated to lanes, and the
lower the relative overhead of a single spare lane. Given
a system where each core requires k operational lanes and
integrates l spares, and the yield of each lane is ylane, the
yield of the lanes can, like the yield of cores, be calculated
with the binomial distribution: ylanes = Binom(ylane, k, l).

3.4 Spare Lane Sharing
The homogeneity of lanes, and the significant role they

play in SIMT architecture, presents an additional, unique
opportunity for low-cost yield enhancement: sharing a spare
lane between two cores, once again illustrated in Figure 2.
When the two cores share a spare lane, if either the white
core or the orange core have a defective lane, Lane S and
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Figure 2: The physical design of SIMT architecture allows
two cores to potentially share a single redundant lane.

the corresponding decode and write-back logic can be em-
ployed. The shared spare lane improves yield and reduces
costs when spare lanes may otherwise be too costly; from a
redundancy perspective, an SSL covers twice the lanes (at
half the overhead) compared with a dedicated spare lane.

3.4.1 SSL Overhead
Integrating a spare shared lane only requires the addition

of multiplexors in the decode and write-back units to direct
signals to and from the spare lane. The performance penalty
of accessing a redundant resource (e.g., pipeline stage) in
general purpose multi-cores is high [18]. However, due to
hierarchical design of SIMTs, a shared spare lane can be in-
cluded in either core with only a small performance loss. To
quantify the area and performance overhead of an SSL, we
added one between two independent tiles of the FlexGrip
GPGPU streaming processor [19]. FlexGrip is very simi-
lar in structure to the SIMT architecture in Figure 1. We
synthesized the processor using the 65nm TSMC standard
library and measured the change in area and clock frequency.
We observe that the area overhead (not including the spare
lane itself) is less than 0.1% of a single lane; clock frequency
falls just 1.3%. Application execution latency is expected
to degrade less than this, as the change in clock frequency
will be absorbed in part by memory access delay. Quantify-
ing this in multiprocessor simulation is the subject of future
work.

3.4.2 SSL Yield
The inclusion of an SSL makes the yield of one core in the

pair dependent upon the yield of the other: if one core needs
the spare shared lane, it is only available if the other core
does not. Consequently, there is no straightforward formula
to calculate a single core’s yield when both SSL and spare
cores are present. Furthermore, the combinatorial space is
prohibitively large; simply counting systems that yield or
do not is computationally intractable as systems grow. We
therefore estimate yield as follows. There are two cases in
which both cores that share a spare lane are functional:

1. Each cores’ lanes yield (ylanes ssl1);

2. One core needs the shared spare lane (2 · ylanes ssl2).

When neither core needs the shared spare lane (when suf-
ficient spare lanes are present or no lanes are defective), the
yield of the set of lanes (given k lanes and l spares) is:

ylanes ssl1 = Binom(ylane, k, l)×Binom(ylane, k, l). (4)

A pair of cores with one core suffering from l+1 defective
lanes only survives if the shared spare lane is available, i.e.,
if it is both functional (not defective itself) and not needed
by the other core. In this case, the yield is:

ylanes ssl2 = ylane ×

(
k + l

l + 1

)
(1− ylane)l+1(ylane)

k−1

×Binom(ylane, k, l). (5)

Symmetry in the system means there are two ways to have
a core that requires the shared spare lane. The total yield
of the pair of cores is therefore ylanes sslp = ylanes ssl1 + 2 ·
ylanes ssl2 . As the cores are identical, the yield of a single
core’s lanes can be estimated as ylanes ssl =

√
ylanes sslp .

When spare cores are not present, this model is exact.
However, error is introduced when spare cores are available.
In this case, the system may yield despite the failure of one
of a pair of a cores sharing a spare lane. We approximate
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the yield with an even number of spare cores as ycores =
Binom(ycoressl ,m, n), where ycoressl is the yield of a core
with a shared spare lane. If an odd number of spare cores
are allocated and each but the last has a shared spare lane,

ycores = Binom(ycoressl ,m, n)(1− ycore)+
m+n+1∑
i=m

(
m+ n

i− 1

)
(1−ycoressl)

m+n−(i−1)(ycoressl)
(i−1)(ycore).

(6)

The effect of the introduced error is, in the end, negligible:
we observe that, for the defect densities considered, systems
that employ more than one type of redundancy (e.g., spare
cores and spare shared lanes) are too expensive to fall on
the performance-cost Pareto-optimal front. We hypothesize
that this may change under higher defect densities; such an
investigation is the subject of future work.

4. EXPERIMENTAL SETUP
To determine what form of redundancy is most beneficial

given a particular (a) configuration and (b) application, we
evaluated the performance, area, and yield of a wide variety
of multi-core SIMT systems executing a diverse benchmarks.

4.1 SIMT Configurations and Benchmarks
We used MV5 [20] to simulate the performance of SIMT

configurations, consistent with parameters in the literature [7],
including: 1 GHz processor clock frequency, 16 KB instruc-
tion and 4 MB L2 cache per core, 300 MHz crossbar, and
300 cycle memory access latency.

We varied the number of cores N , N ∈ {1, 2, 4, 6, . . . , 20},
the number of lanes per core (SIMT width) W and hardware
threads per core (SIMT depth)D, W&D ∈ {1, 2, 4, 8, . . . , 64}
and L1 data cache size S, S ∈ {8, 16, 32, 64} KB. From the
parameter space defined above, we selected all configurations
with die area within [50, 250] mm2.

We selected benchmarks from several suites: Minebench [21],
SPLASH-2 [22], and Rodinia [23]. FFT, Filter, HotSpot,
LU, MergeSort, ShortestPath, KMeans, SVM have been pre-
viously used to evaluate multi-core SIMT performance [7].

4.2 Cost Estimation
The cost of a die Cdie is a function of the cost of a wafer

Cwafer, the number of dice per wafer, and die yield, ysys [24]:

Cdie =
Cwafer/(Dice/Wafer)

ysys
. (7)

The number of dice per wafer can be estimated as:

Dice/Wafer =
π × (Radiuswafer)

2

Areadie
− π ×Radiuswafer

2

√
Areadie

2

.

(8)
We assume a wafer radius of 150mm, a wafer yield of 1,
and that wafers cost $3000 each. ysys is calculated as in
Section 3. The yield of individual components, such as lanes,
is calculated with the negative binomial yield model [25, 26]:

yb =

(
1 +

λb ×Ab
α

)−α
. (9)

where (α), (λb), and (Ab) are the clustering parameter, de-
fect density, and component area, respectively. Smaller α
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Figure 3: Different sets of configurations benefit the most
from different types of redundancy.

results in stronger defect clustering and vice versa, a func-
tion of the process technology. We assume α = 4 and
λb = 0.025/cm2 in 65nm manufacturing technology [24].

To estimate the chip area we measured the area of func-
tional units based on die photo of an AMD Opteron pro-
cessor. As this processor is fabricated in 130nm, we used
a scaling factor of 0.7 per generation to scale the processor
to 65nm. While the Opteron and SIMT processors are not
architecturally the same, the relative size of the functional
units is not expected to vary significantly. Moreover, since
the core’s area is dominated by the integer ALU and multi-
plier, the relative size of other components is less important.

5. RESULTS
We conducted a variety of experiments to validate our

models and evaluate the different redundancy techniques.

5.1 Model Validation
To validate our yield models (Section 3), we compared

our analytical results with statistical simulation using Monte
Carlo Simulation (MCS). We considered 140 large configura-
tions (each with more than 50 cores, and at least 16 lanes per
each core), divided into seven equal subsets. Each of the first
three subsets are allocated a single type of redundancy, a
spare core (SC), spare lane (SL), or shared spare lane (SSL).
Each of the second three are allocated a pair of redundancy
types (SC+SL, SC+SSL, or SL+SSL). The last subset is al-
located all three types. As appropriate, we consider n SC,
k SL, and zero or one SSL, where n ∈ SC = {0, 1, ...,m},
l ∈ SL = {0, 1, ..., k} for a system with m cores and k lanes
per core. The number of HTC in a configuration is k+ l+s,
where s = 1 if an SSL has been integrated.

We simulated random defects, using an unrealistically high
defect density (0.3/cm2) to exaggerate any potential error
in the models. In each MCS trial, component yield was cal-
culated as described in Section 4.2, and component failure
determined by sampling the uniform distribution U(0, 1).
When X ∈ U(0, 1) > yc, c is defective. If no redundancy
has been allocated to cover this defect, the system in this
trial is marked as defective. We performed 100K trials for
each configuration. On average over all subsets, the relative
difference in yield between MCS and our models is 0.61%,
with a 95% confidence interval of 0.76% yield.

5.2 Cost-effectiveness of Redundancy Regimes
We next investigated the general effectiveness of each re-
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Figure 4: Different types of redundancy is added to config-
urations to evaluate application-specific cost reduction.

dundancy technique across a wide variety of configurations.
For each of 283 configurations (the full design space in Sec-
tion 4.1, but with D$ held constant—D$ size does not affect
yield, only performance), we allocated a single type of re-
dundancy (combinations of redundancy do not appear on
the Pareto-optimal front for our selected defect density). As
in Section 5.1, we consider n SC, k SL, and zero or one SSL.
An SSL is only allocated when there is more than one core
in the system. We then calculated the average relative cost
reduction (ARCR) of defect-tolerant configuration. ARCR
is defined as the change in cost relative to the baseline design
with no redundancy. Cost is calculated as in Eq. (7).

In Figure 3, we divide 202 configurations, 70% of those
evaluated, into four groups with similar parameters and cost
reduction behavior: those that benefit from (a) no redun-
dancy, (b) core sparing, (c) spare lane sharing, and (d) lane
sparing. Designs are omitted to simplify the categories for
the purpose of illustrating the differences in cost reduction
as a function of configuration types.

The configurations in each group are specified by the tu-
ple (Cores, Lanes, HTC ), where each value is given as a
range. The ranges associated with each group are indicated
on the x-axis; the y-axis indicates the ARCR of the group
of configurations for each type of redundancy.

We observe that when systems are composed of small
processors, no redundancy technique reduces manufacturing
cost—e.g., lane sparing leads to 1.5% relative cost increase
on average. As processors and systems grow, the best redun-
dancy regime varies. When there are few large cores (e.g.,
more than eight HTC), core sparing reduces the cost nearly
2% and 3% more than SSL and SL, respectively: recall that
HTCs cannot be explicitly protected with redundancy; only
spare cores can cover failures in HTCs. However, when the
number of lanes and HTCs per each core are restricted to
less than 16, spare lane sharing is best: the area overhead
is amortized across two cores. In this group, the ARCR
is 10.8%, 8.8%, and 6.9% for SSL, SL, and SC, respectively.
When cores utilize many lanes, lane sparing is the best: SSL
is not as effective in the presence of many lanes. In this case,
SL reduces ARCR by 14.2%, 0.5% better than SSL.

5.3 General Design Space Characterization
Since performance is an important objective in SIMT pro-

cessor design, our final experiment (a) identified the set
of performance-cost Pareto-optimal designs for each bench-
mark, and (b) added redundancy to each, to determine which
type of redundancy best reduces the cost of application-
specific configurations. We performed exhaustive perfor-
mance simulation using MV5, considering 813 configurations

Table 1: ARCR for Performance-cost POF Configurations

App. Configurations ARCR (%)

Cores D$ Size HTC Lanes SC SL SSL

Filter [2, 8] [8, 32] [16, 64] [2, 4] 11.2 7.9 9.6
[4, 16] [16, 32] [8, 16] [16, 32] 7.5 8.3 7.2
[1, 2] [8, 32] [2, 8] [1, 4] -0.9 -1.3 -0.7

KM∗ [6, 8] [8, 32] [8, 16] [1, 2] 7.3 4.3 5.8
[4, 16] [8, 16] [2, 4] [4, 16] 5.3 7.1 8.3
[1, 2] [16, 32] [1, 4] [1, 4] -1.7 -1.8 -0.9

FFT [8, 16] [8, 64] [8, 16] [1, 4] 4.5 3.1 4.0
[1, 4] [8, 16] [1, 8] [1, 2] -0.9 -1.6 -1.2

MS+ [16, 20] [32, 64] [8, 16] [1, 4] 5.6 4.3 4.7
[4, 8] [8, 32] [4, 8] [4, 8] 3.6 3.9 4.5
[1, 2] [8, 16] [4, 16] [1, 4] -0.6 -1.2 -0.8

SP† [16] [16, 64] [8, 32] [2, 4] 7.6 6.1 6.8
[8] [16] [4, 8] [4, 8] 7.2 7.1 8.7

[1, 2] [8, 16] [1, 4] [1, 4] -1.1 -1.4 -0.7

HS‡ [16, 20] [32, 64] [8, 16] [1, 4] 5.5 4.2 4.8
[4, 16] [8, 32] [4, 16] [4, 8] 4.7 5.3 6.0
[1, 2] [16, 32] [1, 32] [1, 2] -1.3 -1.1 -0.5

LU [16, 20] [16, 64] [16, 32] [1, 4] 6.2 4.7 5.6
[2, 4] [16, 32] [4, 8] [4, 8] 3.5 4.1 4.5
[1, 2] [8, 16] [4, 16] [1, 2] -0.7 -1.7 -0.9

SVM [8] [8] [8] [2] 1.3 -0.8 -0.5
[1, 2] [8, 64] [1, 32] [1, 2] -1.1 -1.0 -0.7

*: KMeans, +: MergeSort, †: ShortestPath, ‡: HotSpot

Table 2: Redundancy type composition of POF

App. Type of Redundancy (%)

SC SL SSL None

Filter 24 19 0 57
KM 28 0 31 41
FFT 27 0 0 72
MS 22 0 8 70
SP 26 0 6 68
HS 21 0 30 49
LU 20 0 19 61
SVM 5 0 0 95

with no redundancy for each benchmark (Figure 4(a)). We
then added redundancy to each configuration, as in Sec-
tion 5.2, to the point that its manufacturing cost is greater
than the cost of the baseline system. Designs utilizing SSL
pay a 1.3% execution latency penalty (see Section 3.4.1).
From the set of baseline and corresponding defect-tolerant
designs, we selected the Pareto-optimal front (POF) (Fig-
ure 4(b)). We observe that systems allocated a combination
of redundancy types, for our defect density, do not appear
on the POF; neither do systems with more than a single
redundant unit of a given type.

The results of our experiments are summarized in Tables 1
and 2. Table 1 lists, by benchmark (App.), the range of
configurations that benefit most, in terms of ARCR, from
each redundancy allocation under consideration: a spare
core (SC), spare lane (SL), shared spare lane (SSL), and
no redundancy (None). The best ARCR for each configura-
tion group is indicated in bold; when no redundancy type
decreases cost, no ARCR is bolded. Table 2 lists, by bench-
mark, the composition of the POF by redundancy type.

We made the bins in Table 1 as large as possible without
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complicating their definition (e.g., by combining two disjoint
or partially overlapping sets). Consequently, some POF de-
signs do not fit well into the bins. For example, consider the
definition of a system according to the tuple (Cores, D$ KB,
Lanes, HTC ). (1, 32, 1, 1) is in the POF for ShortestPath,
but employs no redundancy. However, expanding None to
include it would require we also include (2, 32, 4, 4), which
belongs to SSL. Each application has, on average, more than
25 POF designs. Three configurations are omitted from Fil-
ter, ShortestPath, and MergeSort; seven and five from LU
and HotSpot, respectively; and, two and one from FFT and
SVM, respectively. In the worst case (LU), incorporation of
the outliers results in 0.2% variation in ARCR.

In general, we observe that systems with few cores (1-
2 or 4) benefit the most from no redundancy. The cores
in these systems often tend to be narrow (1-2 or 4 lanes);
consequently, spare cores, lanes, or shared lanes, represent
too great an overhead to be absorbed by increases in yield.
For configurations with more cores, few lanes, and many
HTCs (generally more than eight), SC is the best redun-
dancy regime. As observed in Section 5.2, only a spare core
covers defects in the HTCs; these systems do not use enough
lanes to benefit from lane-level redundancy. Aside from Fil-
ter, applications do not generally benefit from a spare lane.
Instead, SSL is used for systems with more lanes (generally
more than four) and fewer HTC (usually less than eight).

For Filter, we observe that SC reduces cost up to 25%,
with an ARCR of 11.2% in configurations with many HTC
(more than 16); SC designs represent 24% of the POF. On
the other hand, 19% the POF utilize SL. These configura-
tions use big cores, and SL reduces cost by 1% more than
SSL on average. No SSL designs appear in the POF.

Alternatively, consider KMeans. This benchmark tends
to use small cores (less than 16 HTC per core), and as a re-
sult SSL outperforms other redundancy types. SSL designs
reduce cost up to 20%, and by 8.3% on average, more than
1% better than the conventional approach, SL. Furthermore,
31% of POF designs use SSL. No SL designs appear in the
POF for KMeans, or any other benchmark besides Filter.

Overall, we observe that when performance-cost Pareto-
optimal designs are considered, a shared spare lane is a suit-
able substitute for a spare lane for most applications. For
HotSpot and KMeans, SSL is not only the dominant redun-
dancy technique, representing a greater share of the POF
than SC, it also reduces costs about 0.4% more than SC, on
average. Moreover, SSL reduces cost more than 0.5% more
than SL on average across all benchmarks.

6. CONCLUSION
Designers today must allocate redundancy to combat de-

creasing manufacturing yields. In this paper, we investi-
gated the application of redundancy allocated at different
design granularities in the context of multi-core SIMT sys-
tems. In addition to evaluating the traditional approaches of
core- and lane-sparing, we proposed spare lane sharing. Un-
der spare lane sharing, the cost of the spare lane is amortized
across two cores, making it affordable for a wider range of
system configurations. Shared spare lanes can be integrated
with negligible area and marginal performance overhead.

We observe that when systems consist of a few small cores,
no redundancy reduces cost: the increase in area is too great
an overhead to be absorbed by increases in yield. Spare cores
increase yield best for applications that require many large,
narrow cores: in these systems, cores are not dominated
by lanes, but by other resources not explicitly protected by

redundancy. Only spare cores can cover their failure.
In general, however, most perform best on systems with a

number of wider cores. In this case, shared spare lanes offer
the best reduction in cost. Notably, only a single benchmark,
Filter, which requires very wide cores, has designs with spare
lanes on its performance-cost Pareto-optimal front. In all
other cases, shared spare lanes outperform spare lanes, mak-
ing them a suitable substitute for spare lanes in the context
of yield improvement in multi-core SIMT systems.
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